A Theoretical Study of ³¹P and ⁹⁵Mo NMR Chemical Shifts in $M(CO)_5PR_3$ (M = Cr, Mo; R = H, CH₃, C₆H₅, F, and Cl) Based on Density Functional Theory and Gauge-Including Atomic Orbitals

Yosadara Ruiz-Morales and Tom Ziegler*

Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4 Received: October 13, 1997; In Final Form: January 5, 1998

A theoretical study has been carried out on ³¹P NMR chemical shifts in the phosphine-substituted metal carbonyls of the type $M(CO)_5PR_3$ (M = Cr and Mo; R = H, CH₃, C₆H₅, F, and Cl) as well as the ⁹⁵Mo NMR chemical shift of $Mo(CO)_5P(C_6H_5)_3$ and $Mo(CO)_5PX_3$ (X = F and Cl). The study was based on density functional theory (DFT) and gauge-including atomic orbitals (GIAO). The calculated chemical shifts and the components of the chemical shift tensor are in good agreement with the available experimental data. The coordination chemical shift expressed as the difference in the isotropic shifts $\Delta \delta = \delta_{M(CO)_5PR_3} - \delta_{PR_3}$ between PR₃ as a ligand, $\delta_{M(CO)_5PR_3}$, and free PR₃, was analyzed in detail. It was shown that the paramagnetic coupling between the π orbitals of the complexed PR₃ ligand π_{PR_3} and the d_{σ} metal-based LUMO of the M(CO)₅PR₃ complex has a positive contribution to the coordination chemical shift, $\Delta \delta$, whereas the paramagnetic couplings between σ_{PR_3} and $\pi^*_{PR_3}$ as well as π_{PR_3} and $\pi^*_{PR_3}$ of the complexed ligand have a negative contributions to $\Delta \delta$ for PF₃ and PCl₃. It is the latter type of couplings that are responsible for the total negative coordination shift in the case of PCl₃. The calculated ⁹⁵Mo NMR chemical shifts of Mo(CO)₅P(C₆H₅)₃ and Mo(CO)₅PX₃ (X = F and Cl) are in good agreement with experiment. The major contribution comes from the paramagnetic coupling between the occupied d_{π} orbitals (HOMO) and the virtual d_{α} orbitals (LUMO).

1. Introduction

It has in the past decade become possible to carry out calculations on NMR chemical shifts¹⁻⁴ with increasing accuracy. In this regard, the application of density functional theory (DFT) has been especially useful for compounds containing heavy elements. The use of DFT in NMR calculations has been pioneered by Malkin⁵ within the "individual gauge for localized orbitals" approach (IGLO)^{3a} and subsequently applied by Kaupp⁶ and Bühl.^{7d,e} Schreckenbach^{8a,b} and Ziegler have more recently presented in a method in which the NMR shielding tensor is calculated by combining the "gauge-including atomic orbitals" (GIAO) approach^{9a,b} with density functional theory (DFT) following earlier work by Seifert9c,d et al. A number of applications¹⁰ have shown that the GIAO-DFT scheme is capable of reproducing experimental values for ligand chemical shifts of transition metal complexes^{10a,b,e} and chemical shifts of heavy main group elements.^{10c,d} The DFT-GIAO scheme has further been extended to include the frozen core approximation^{11a} and the scalar relativistic two-component Pauli type Hamiltonian^{11b} for relativistic calculations. The DFT-GIAO implementation makes full use of the modern features of DFT in terms of accurate exchange-correlation (XC) energy functionals and large basis sets. The DFT-GIAO method has also been implemented by Rauhut^{8c} et al. and Cheeseman^{8d} et al. as well as Handy^{8e} et al. The DFT-GIAO method has further been used in conjunction with hybride DFT methods^{12b} by Bühl^{7a-c} as well as Godbout and Oldfield.^{12a} Traditional ab initio methods have also been applied by Nakatsuji^{3c,13} et al. to the calculation of NMR chemical shifts in compounds containing heavy elements.

We present calculations on the ${}^{31}P$ chemical shift and chemical shift components for M(CO)₅PR₃ (M = Cr and Mo;

Figure 1. Frontier orbitals in PR₃ and CO.

R = H, CH_3 , C_6H_5 , F, and Cl) as well as the ⁹⁵Mo NMR chemical shift of $Mo(CO)_5P(C_6H_5)_3$ and $Mo(CO)_5PX_3$ (X = F and Cl) based on the GIAO-DFT approach.^{8a,b,11} One objective of our study has been to test the accuracy and predictive power of the GIAO-DFT method by comparing theoretical results to the well-established experimental values and results from other theoretical methods. We shall in addition try to explain how the ³¹P chemical shift of PR₃ is changed as the molecule is complexed to a metal center. A comparison will also be made to our recent DFT-GIAO^{10a,e} studies on binary carbonyl complexes in which the difference (coordination shift) in the isotropic shielding $\Delta \delta = \sigma_{\rm CO} - \sigma_{\rm M(CO)n}$ between free CO and CO as a ligand, $\sigma_{M(CO)n}$ was analyzed in detail. Phosphine is similar (isolobal) to CO as a ligand in that both molecules contain a σ -type orbital, two π -type orbitals and two π^* -type orbitals, see Figure 1.

Kaupp^{6f} was the first to carry out DFT calculations on the ³¹P coordination shifts ($\Delta\delta$) in a study on M(CO)₅L [M = Cr, Mo, and W; L = PH₃, P(CH₃)₃, PF₃, and PCl₃] by using the sum-over-states density-functional perturbation theory (SOS-

DFPT) by Malkin^{5a-c} et al. His analysis of ³¹P shielding tensors in the free ligands in terms of canonical molecular orbitals is comparable with our findings. However, a detailed analysis of the computed trends in the metal complexes in terms of individual electronic excitations was not possible. Here, we have been able to analyze the observed coordination chemical shifts in terms of specific paramagnetic couplings between occupied and virtual orbitals. Some recent experimental solidstate ³¹P studies on Cr(CO)₅Ph₃ and Cr(CO)₄(CS)Ph₃ makes it further possible for the first time to compare observed and calculated shift tensor components in phosphine complexes and test the DFT-GIAO method for this type of large size systems.

Wasylishen et al.^{14a-d} have pioneered the recording of ³¹P and ⁹⁵Mo NMR shifts in the solid state. The interpretation of ³¹P phosphine coordination shifts in terms of the σ -donor and π -acceptor abilities of these ligands has been pioneered by Alyea¹⁵ et al. on the basis of a number of careful experimental investigations involving Mo(CO)₅PR₃ complexes. Alyea¹⁵ et al. have further included ⁹⁵Mo NMR in their investigation. We shall here extend our NMR shift calculations to ⁹⁵Mo. The field of ⁹⁵Mo has been reviewed by Malito.^{14e}

2. Computational Details and the GIAO-DFT Method

Our implementation of the DFT-GIAO method has been described in details elsewhere.^{8a-b,10} It is based on the Amsterdam density functional package ADF.⁶⁻²¹ We use experimental geometries, unless otherwise stated. The exchange– correlation (XC) energy functional according to Becke²² and Perdew²³ are employed self-consistently on top of the local density approximation (LDA).

We employ an uncontracted triple- ζ quality valence basis of Slater type atomic orbitals (STOs).²⁴ The valence region of the basis is extended by two sets of d (p for hydrogen) polarization functions per atomic center.

The metal center was described by an uncontracted triple- ζ STO basis set^{24,25} for the outer *ns*, *np*, *nd*, (*n*+1)s, and (*n*+1)p orbitals extended by two sets of d polarization functions, whereas the shells of lower energy were treated by the forzen core approximation.^{11a,16} The valence on phosphorus included the 1s shell and was described by an uncontracted triple- ζ STO basis augmented by two 3d and one 4f function, corresponding to basis set V of the ADF package.²¹ A set of auxiliary²⁶ s, p, d, f, and g STO functions, centered on all nuclei, was used in order to fit the molecular density and present Coulomb and exchange potentials accurately in each SCF cycle.

The NMR shielding tensor for nucleus N can be written as^{8a}

$$\sigma_{\lambda v} = \sigma_{\lambda v}^{d} + \sigma_{\lambda v}^{p} = \int \frac{\vec{r}_{N} \times [\vec{J}_{v}^{d}(\vec{r}_{N}) + \vec{J}_{v}^{p}(\vec{r}_{N})]_{\lambda}}{r_{N}^{3}} d\vec{r}_{N}$$
(1)

Here \vec{J}^{d} and \vec{J}^{p} are respectively the diamagnetic and paramagnetic current densities^{8a} induced by an external magnetic field \vec{B}_{o} . Equation 1 involves an expectation value of r_{N}^{-3} where r_{N} is the distance to the NMR nucleus. The paramagnetic current density originates primarily from a coupling between occupied Ψ_{i} and virtual orbitals Ψ_{a} , induced by the external magnetic field \vec{B}_{o}

$$\vec{J}^{p} = \sum_{s=1}^{3} \sum_{i}^{\text{occ uocc}} u_{ai}^{(1,s)} [\Psi_{i} \vec{\nabla} \Psi_{a} - \Psi_{a} \vec{\nabla} \Psi_{i}] B_{o,s} \qquad (2)$$

The principle contribution to the coupling $u_{ai}^{(1)}$ is given by

$$u_{ai}^{(1)} \approx \propto - \frac{1}{2(\epsilon_{i}^{(0)} - \epsilon_{a}^{(0)})^{\lambda,\nu}} \sum_{\lambda,\nu} c_{\lambda a}^{(0)} c_{\nu i}^{(0)} \{ \langle \chi_{\lambda} | [\vec{r}_{\nu} \times \vec{\nabla}]_{u} | \chi_{\nu} \rangle \}$$
$$\propto - \frac{1}{2(\epsilon_{i}^{(0)} - \epsilon_{a}^{(0)})} \langle \Psi_{a} | \hat{M} |_{u} \Psi_{i} \rangle$$
(3)

Here $\epsilon^{(0)}$ refers to orbital energies of the unperturbed molecules without the external magnetic field. $\langle \Psi_a | \hat{M}_u | \Psi_i \rangle$ represents the first-order magnetic coupling between an occupied molecular orbital, *i*, and a virtual orbital, *a*. Within the GIAO formalism,^{8a} the action of the magnetic operator \hat{M}_u on Ψ_q is simply to work with $i\hat{L}_u^v$ on each atomic orbital x_v . Here \hat{L}_u^v is the *u*-component of the angular momentum operator with its origin at the center \vec{R}_v on which x_v is situated. Tabulations for $\hat{L}_u^v x_v$ are available in the literature.^{27,28}

3. Results and Discussions

We shall now provide a discussion of how the ³¹P shift tensor in PR₃ is modified as the PR₃ molecule is complexed to a metal center. The discussion will start with the free PR₃ ligand and continue to (CO)₅MPR₃ in the following sections. The coordinate systems are always chosen such that the *z*-axis points along the C₃-axis in the free ligand or the M–P bond vector in the (CO)₅MPR₃ complexes. The *x*-axis is placed in the C_s reflexation plane of the (CO)₅MPR₃ complex.

The chemical shift of a sample nuclei relative to a reference can be written with sufficient accuracy for our purpose as^{29a}

$$\delta_{\text{sample}} = \sigma_{\text{reference}} - \sigma_{\text{sample}} \tag{4a}$$

Complexation of a ligand to a metal is accompanied by changes in the chemical shifts of the ligand atoms. These effects are usually analyzed in terms of the coordination chemical shift. The coordination shift is defined as^{29b}

$$\Delta \delta = \delta_{\text{complex}} - \delta_{\text{ligand}} \tag{4b}$$

In our discussion the shielding terminology (σ) will be employed as well. Given the opposite signs of σ (shielding) and δ (chemical shift), the coordination shift should be defined in terms of the shielding terminology as

$$\Delta \delta = \sigma_{\text{ligand}} - \sigma_{\text{complex}} \tag{4c}$$

Thus, the coordination shift is defined as the difference in the shielding of the free ligand and the shielding of the ligand in the complex.

4. Free PR₃

The ³¹P NMR paramagnetic, diamagnetic, and isotropic components of the chemical shielding tensor for the free phosphines are presented in Table 1 together with the available experimental data. Experimental structures idealized to $C_{3\nu}$ symmetry have been used in all calculations on the free PR₃ molecule. The components of the shielding tensors perpendicular and parallel to the C_3 axis are given as σ_{\perp} and σ_{\parallel} , respectively. There is a good agreement between theory and experiment for PH₃, P(CH₃)₃, and P(C₆H₅)₃ with deviations of 15 ppm. The agreement is less satisfactory for PF₃ and PCl₃ with deviations up to 60 ppm.

The total shielding components σ_{\perp} and σ_{\parallel} are dominated by large positive diamagnetic contributions σ_{\perp}^{d} and σ_{\parallel}^{d} whereas the paramagnetic components σ_{\parallel}^{p} and σ_{\parallel}^{p} are negative, and in most

TABLE 1: Experimental and Calculated Shielding Tensors^a for Free Phosphines^a

molecule	$\sigma^{ m d}_{ot}$	$\sigma^{ m p}_{\perp}$	σ_{\perp}	$\sigma^{ m d}_{ m II}$	$\sigma^{ m p}_{ m II}$	$\sigma_{ m ll}$	σ
PH ₃	965.4 (981.5) ^b	$-372.2(-368.4)^{b}$	593.2 (613.1) ^b	963.5 (980.0) ^b	$-439.4(-422.9)^{b}$	524.1 (557.1) ^b	570.2 (594.4) ^b
$P(CH_3)_3$	958.3	-559.7	398.6 (389.2) ^b	946.6	-586.0	360.6 (396.8) ^b	385.9 (391.7) ^b
PPh_3	959.5	-645.9	313.6 (319.3) ^{c,d}	953.6	-618.9	334.7 (370.3) ^{c,d}	320.6 (336.3) ^{c,d}
PF ₃	948.5	-857.2	91.3 (162.4) ^b	938.8	-583.9	354.9 (343.4) ^b	179.2 (222.7) ^b
PCl ₃	966.9	-971.8	-4.9	958.6	-811.5	147.1	45.8 (111.3) ^b

^{*a*} All numbers are in ppm. The component σ_{\perp} is perpendicular to $C_{3\nu}$ axis, σ_{\parallel} is parallel to C_3 axis. Superscrips p and d indicate paramagnetic and diamagnetic components, respectively. ^{*b*} Experimental numbers from ref 45. ^{*c*} Experimental numbers from ref 40. ^{*d*} Experimental numbers are in parentheses. Experimental data originally reported as chemical shift (δ) were converted to absolute shielding (σ) using the experimental data ³¹P in 85% H₃PO₄ (aq) $\sigma_{H_3PO_4}$ = 328.35 ppm (ref 45) and $\delta = \sigma_{H_3PO_4} - \sigma_{substance}$.

TABLE 2: Calculated and Experimental ³¹P Chemical Shift Tensor Components and Isotropic Chemical Shift for Free PR₃ and $M(CO)_5PR_3$ (Values in ppm) Comparison with ¹³C for Free CO and $Cr(CO_6)$

system	cone angle	$\delta_{xx}{}^y$	$\delta_{yy}{}^y$	$\delta_{zz}{}^y$	δ^{d}	$\delta^{ m p}$	chemical shift δ (exptl) ^r
CO ^c		328.9 (317.7) ^r	328.9 (317.7)	-94.1 (-88.0)	-4.6	192.5	187.9(184.4)
$Cr(CO)_6^c$		354.0 (353.0)	354.0 (353.0)	-86.3 (-70.0)	-12.1	219.3	207.2 (212.0)
PH ₃ ^f	87.0 ^j	$-277.7(-284.8)^{s}$	$-277.7(-284.8)^{s}$	$-208.6(-228.8)^{s}$	-9.1	-245.6	$-254.7^{a}(-266.1)^{s}$
$Cr(CO)_5PH_3^g$		-67.5	-67.5	-211.1	-12.5	-102.9	$-115.4^{a}(-129.6)^{b}$
Mo(CO) ₅ PH ₃ ^q		-113.1	-113.1	-210.8	-13.3	-132.4	$-145.7^{a}(-165.0)^{d}$
$P(CH_3)_3^e$	118.0 ^j	$-83.1(-60.8)^{s}$	$-83.1(-60.8)^{s}$	$-45.1(-68.4)^{s}$	1.3	-71.7	$-70.4^{a}(-63.4)^{s}$
$Cr(CO)_5P(CH_3)_3^h$		45.1	45.1	-45.1	7.2	7.8	$15.0^a (6.5)^i$
$Mo(CO)_5P(CH_3)_3^n$		6.1	6.1	-45.0	2.1	-13.0	$-10.9^{a}(-17.0)^{d}$
PPh ₃ ^l	145.0 ^j	$1.9 (9.0)^k$	$1.9 (9.0)^k$	$-19.2(-42.0)^{k}$	-1.8	-3.3	$-5.1^{a}(-8.0)^{k}$
$Cr(CO)_5PPh_3^m$		$106.8 (127.0)^k$	94.2 (80.0) ^k	$-7.4(-42.0)^{k}$	1.4	63.1	$64.5^a (55.0)^k$
Mo(CO) ₅ PPh ₃ ^o		85.5	71.1	-7.9	0.4	50.1	$50.5^a (38.0)^d$
$Cr(CO)_4(CS)PPh_3^k$		$112.6 (101.0)^k$	$106.9 (70.0)^k$	$-20.2(-37.0)^{k}$	1.1	65.3	$66.4^a (46.0)^k$
PF_3^{ν}	104.0^{w}	224.2 (166.0) ^s	224.2 (166.0) ^s	$-39.4(-15.0)^{s}$	10.4	125.9	$136.3^a (105.7)^s$
$Cr(CO)_5PF_3^g$		361.2	361.2	-117.3	10.4	191.4	201.7 ^a (174.0) ^z
$Mo(CO)_5PF_3^p$		312.9	312.9	-97.1	10.7	165.5	$176.2^a (147.0)^d$
PCl ₃ ^u	124.0^{w}	320.4	320.4	168.4	-8.5	278.2	269.7 ^a (217.1) ^s
$Cr(CO)_5PCl_3^t$		340.5	340.5	-44.3	-16.2	228.5	$212.3^a (187.0)^d$
Mo(CO) ₅ PCl ₃ ^g		347.6	347.6	27.4	-16.0	256.9	240.9 ^a (152.4) ^x

^{*a*} Calculated absolute chemical shielding $\sigma_{H_3PO_4} = 315.5 \text{ ppm}$, $\sigma_{H_3PO_4}^d = 955.7 \text{ ppm}$, $\sigma_{H_3PO_4}^p = -640.2 \text{ ppm}$; structural data from ref 34, (exptl value: ³¹P in 85% H_3PO_4 (aq) $\sigma_{H_3PO_4} = 328.35 \text{ ppm}$, ref 45), and $\delta = \sigma_{H_3PO_4} - \sigma_{substance}$, $\sigma^d = \sigma_{H_3PO_4}^d - \sigma_{substance}^d$, $\delta^p = \sigma_{H_2PO_4}^p - \sigma_{substance}^p$. ^{*b*} Reference 30. ^{*i*} Reference 10a. ^{*d*} Reference 41. ^{*e*} Structural data from ref 36. ^{*f*} Structural data from ref 37. ^{*s*} Optimized structure. ^{*h*} Structural data from ref 38. ^{*i*} Reference 39. ^{*j*} Reference 33. ^{*k*} Reference 40. ^{*l*} Reference 41. ^{*m*} Reference 42. ^{*n*} Reference 43. ^{*o*} Reference 44. ^{*p*} Reference 45. Experimental data originally reported as absolute shieldings (σ) were converted to chemical shifts (δ) using the experimental data ³¹P in 85% H₃PO₄ (aq) $\sigma_{H_3PO_4} = 328.35 \text{ ppm}$ (ref 45) and $\delta = \sigma_{H_3PO_4} - \sigma_{substance}$. ^{*i*} Structural data from ref 43. ^{*u*} Structural data from ref 43. ^{*u*} Structural data from ref 45. ^{*v*} Reference 37. ^{*w*} Reference 14. *x* Reference 15. ^{*y*} For all the systems except for M(CO)₅PPh₃ and Cr(CO)₄(CS)PPh₃ δ_{xx} and δ_{yy} are the perpendicular components, δ_{\perp} , of the chemical shift tensor. ^{*z*} Reference 48.

cases smaller in absolute terms, Table 1. The diamagnetic components will not contribute much to the chemical shift (relative to H_3PO_4)

$$\delta = \sigma_{\rm H_3PO_4} - \sigma_{\rm compound} = \delta^{\rm d} + \delta^{\rm p} \tag{5}$$

since the diamagnetic shielding largely comes from constant core terms that are the same in all phosphorus compound and thus cancel out in the expression for the diamagnetic shift

$$\delta^{d} = \sigma^{d}_{H_{3}PO_{4}} - \sigma^{d}_{compound} \tag{6}$$

The chemical shift is instead dominated by the paramagnetic contribution

$$\delta^{\rm p} = \sigma^{\rm p}_{\rm H_3PO_4} - \sigma^{\rm p}_{\rm compound} \tag{7}$$

as the paramagnetic shielding σ^{p} varies considerable among phosphorus compound, Table 1. The calculated chemical shifts for the free PR₃ molecules are given in Table 2.

The leading paramagnetic contribution to $\sigma_{\perp}^{\rm p}$ (Table 1) comes from the coupling between the occupied $\sigma_{\rm PR_3}$ HOMO, **1a**, and the virtual $\pi^*_{\rm PR_3}$ orbitals, **1b**, of PR₃ through the matrix elements $\langle \sigma_{\rm PR_3} | \hat{M}_s | \pi^*_{\rm PR_3} \rangle$ (s = x or y)³¹. The function $\hat{M}_x | \pi^*_{\rm PR_3} \rangle$, **1c**³², will have the form of a σ -type orbital, and thus

overlap with the HOMO **1a**. The same type of coupling is found in the case of free CO^{10a} between σ_{CO} and π^*_{CO} .

The paramagnetic shielding component σ_{\perp}^{p} is inversely proportional to the gap between occupied and virtual orbitals, eq 3. The orbital energies of the occupied σ_{PR_3} orbitals and the virtual $\pi^*_{PR_3}$ orbitals are reported in Table 3 along with the energy gap. It is observed from Tables 1 and 3 that, in general, without considering PF₃, the smaller the energy gap the larger the paramagnetic shielding σ_{\perp}^{p} components in absolute terms $|\sigma_{\perp}^{p}|$. PCl₃ presents the smallest energy gap and the largest value for $|\sigma_{\perp}^{p}|$. PF₃ has the largest energy gap but it does present the smallest value for $|\sigma_{\perp}^{p}|$ as expected. In this case

TABLE 3: Orbital Energies for the σ_{PR_3} -, π_{PR_3} -, and $\pi_{PR_3}^*$ -Type Orbitals and Energy Gaps between σ and π^* and π and π^* Orbitals for the Free Phosphines

	orbit	al energy	(ev)		
system	π - type orbital	σ- type orbital	π^* - type orbital	energy gap between σ and π^* orbitals (eV)	energy gap between π and π^* orbitals (eV)
PH ₃	-9.603	-6.812	-0.365	6.447	9.238
$P(CH_3)_3$	-7.904	-5.000	0.615	5.615	8.519
PPh ₃	-8.259	-5.571	0.308	5.879	8.567
PF ₃	-14.349	-8.244	-1.676	6.568	12.673
PCl ₃	-11.795	-7.288	-2.419	4.869	9.376

other factors defining σ_{\perp}^{p} such as the magnitude of the matrix elements $\langle \Psi_{a} | \hat{M}_{u} | \Psi_{i} \rangle$, eq 3, and the r_{N}^{-3} factor in the integrant of eq 1 become important as well. There is a good agreement between theory and experiment for the perpendicular shielding component σ_{\perp} in the case of PH₃, P(CH₃)₃, and P(C₆H₅)₃. The error in σ_{\perp} is much larger for PF₃. We attribute the error for PF₃ and PCl₃ to an overestimation of $|\sigma_{\perp}^{p}|$.

The parallel paramagnetic shielding component $\sigma_{\parallel}^{\rm p}$ comes from the coupling between the occupied $\pi_{\rm PR_3}$ orbitals, **2a**, and $\pi^*_{\rm PR_3}$, **2b**, through the common lobes in $\hat{M}_z | \pi^*_{\rm PR_3} \rangle$. For the case of free CO the paramagnetic contribution $\sigma_{\parallel}^{\rm p}$ is zero. This is due to the fact that $\langle \pi_{y_{\rm CO}} | \hat{M}_z | \pi^*_{x_{\rm CO}} \rangle = 0$ because $\hat{M}_z | \pi^*_{x_{\rm CO}} \rangle$ happens to be equal to $\pi^*_{y_{\rm CO}} \, and \langle \pi^*_{y_{\rm CO}} | \pi^*_{y_{\rm CO}} \rangle = 0$.

The energy gap between $\pi^*_{PR_3}$ and π_{PR_3} is smaller in PMe₃ and P(C₆H₅)₃ than in PH₃, Table 3, this produces a numerically larger paramagnetic σ_{\perp}^p shielding in PMe₃ and P(C₆H₅)₃ compared to PH₃, Table 1. For the PX₃ systems σ_{\perp}^p is numerically large in the case of PF₃ although it has the biggest energy gap, Table 3. Again, other factors seems to be dominating for this molecule.

Kaupp^{6f} found from a set of SOS-DFPT calculations that the most important contributions to the ³¹P chemical shift of free PR₃ are due to paramagnetic couplings between the occupied P–R bonding orbitals **1a,b** and the lowest-lying virtual orbital 1c in accordance with our findings. Kaupp used a correction^{5b,30} to the orbital energy gap of eq 3 which affords somewhat better results for PF₃ and PCl₃. The foundation of this correction is not yet clear^{8a,c} and it has not been applied here.

5. General Considerations for M(CO)₅PR₃ Systems

It follows from Table 2 that the calculated ³¹P chemical shifts for the phosphine substituted metal carbonyls are in good agreement with the experimental values. The theoretical estimates are derived from a single "frozen" molecule in the gas phase at 0 K without corrections for thermal motions and solvent effects. It follows further from Table 2 that it is the paramagnetic contribution to the chemical shift δ^{p} that determines the total value of δ in the phosphine-substituted metal carbonyls, whereas the diamagnetic δ^{d} term is numerically small.

 TABLE 4: Paramagnetic Contributions to the Calculated

 ³¹P Coordination Shift^a in M(CO)₅PR₃

system	$\Delta \delta^{\mathrm{p}}_{xx}$ (ppm) ^c	$\Delta \delta^{\mathrm{p}}_{yy}$ (ppm) ^c	$\Delta \delta^{\mathrm{p}}{}_{zz}$ (ppm) ^c	$\Delta \delta^b$ (exptl) (ppm) ^a
Cr(CO) ₅ PH ₃	211.1	211.1	5.86	139.3 (136.5)
$Cr(CO)_5P(CH_3)_3$	118.2	118.2	2.2	85.5 (69.9)
Cr(CO) ₅ PPh ₃	100.3	88.1	10.7	69.6 (63.0)
Cr(CO) ₅ PF ₃	134.7	134.7	-73.0	65.4 (68.3)
Cr(CO) ₅ PCl ₃	25.4	25.4	-199.9	-57.4 (-30.1)
Mo(CO) ₅ PH ₃	167.0	167.0	5.6	109.0 (101.1)
Mo(CO) ₅ P(CH ₃) ₃	83.6	83.6	9.0	59.5 (46.4)
Mo(CO) ₅ PPh ₃	82.7	65.7	11.7	55.7 (46.0)
Mo(CO) ₅ PF ₃	86.7	86.7	-54.7	31.2 (41.3)
Mo(CO) ₅ PCl ₃	32.5	32.5	-128.9	-28.8 (-64.7)

^{*a*} Coordination shift: $\Delta \delta = \sigma_{PR_3} - \sigma_{[M(CO)_5PR_3]}$. ^{*b*} $\Delta \delta = \sum_{s=1}^{3} \Delta \delta_{ss}^{p} + \Delta \delta^{d}$. ^{*c*} $\Delta \delta_{ss}^{p} = \sigma_{ss,PR_3}^{p} - \sigma_{ss,[M(CO)_5PR_3]}^{p}$ is the difference in the paramagnetic shielding between [M(CO)₅PR₃], $\sigma_{ss,[M(CO)_5PR_3]}^{p}$, and the ligand PR₃, σ_{ss,PR_3}^{p} .

Figure 2. Schematic orbital interaction diagram for M(CO)₅PR₃.

Experimental shift tensor components have been reported for Cr(CO)₅PPh₃ and Cr(CO)₄(CS)PPh₃, Table 2. It is gratifying to note that the GIAO-DFT method affords δ_{ss} (ss = xx, yy, zz) values in reasonable agreement with experiment for these rather large systems, Table 2. We note that the δ_{xx} and δ_{yy} components perpendicular to P-M bond vector differ considerably from the corresponding δ_{xx} and δ_{yy} components of the free PPh₃ ligand perpendicular to the C_3 -axis. On the other hand the δ_{zz} component along the M-P bond vector is quite similar to the δ_{zz} component along the C₃-axis in the free PPh₃ ligand. We shall now turn to an interpretation of the observed changes in the ³¹P chemical shift as PR₃ is complexed to the metal center, $\Delta\delta$ of eq 4. The calculated and experimental values of $\Delta\delta$ for the M(CO)₅PR₃ systems are tabulated in Table 4. A schematic orbital interaction diagram for M(CO)₅PR₃ is given in Figure 2. The diagram presents the key oribtals of M(CO)₅PR₃ resulting from the interaction of σ_{PR_3} , π_{PR_3} , and $\pi^*_{PR_3}$ of PR₃ with d_{σ} and d_{π} of the M(CO)₅ fragment.

The all-dominating paramagnetic part, $\Delta \delta^{p}$, of the coordination shift, $\Delta \delta$, has contributions from the coupling between occupied and virtual orbitals $\Delta \delta^{oc-vir}$, as well as contributions $\Delta \delta^{oc}$ that only depend on the occupied orbitals. Our calculations show that the trends in $\Delta \delta$ between different phosphine complexes, Table 4, correlates with the paramagnetic coupling between occupied and virtual orbitals $\Delta \delta^{oc-vir}$. We have, in order to gain further insight into the coordination chemical shift, displayed the individual components $\Delta \delta_{ss}^{p}$ (s = x, y, and z) of $\Delta \delta^{p}$ in Table 4.

The distortion of the PR₃ ligand on complexation has a positive contribution (<20 ppm) to $\Delta \delta_{ss}^{p}$ (s = x, y, and z). We have previously found^{10a} that the CO bond stretch in M(CO)₆ has an important contribution to $\Delta \delta_{ss}^{p}$ (around 10 ppm in ¹³C NMR and around 20 ppm in ¹⁷O NMR).

6. ³¹P Coordination Shifts in M(CO)₅PH₃, M(CO)₅PMe₃, and M(CO)₅PPh₃

For these systems, our calculations reveal that the two components $\Delta \delta_{xx}^{p}$ and $\Delta \delta_{yy}^{p}$ are determined principally by the paramagnetic coupling the occupied π_{PR_3} -based orbitals 1a',-1a" and the virtual d_o-type orbital 4a', Figure 2. The occupied π_{PR_3} -type orbital 1a", **3a**, interacts with the virtual d_o-type orbital 4a', **3b**, through the common lobes in $\hat{M}_y|4a'\rangle$, **3c**. Similar interactions can be found for the *x*-direction involving \hat{M}_x .

The coupling in **3c** represents a (negative) paramagnetic contribution to the ³¹P shielding in the M(CO)₅PR₃ complex not present (possible) in the free PR₃ ligand. It will as a consequence afford a positive contribution to $\Delta\delta$, eq 4. The positive contribution from **3c** to $\Delta\delta$ should to a first approximation be inversely proportional to the energy gap between the 1a" and 4a' oribtals, eq 3. We find indeed that a decrease in the energy gap along M(CO)₅PH₃ < M(CO)₅PMe₃ < M(CO)₅PPh₃, Table 5, gives rise to an increase in $\Delta\delta$ following the order M(CO)₅PH₃ > M(CO)₅PMe₃ > M(CO)₅PPh₃ for both metals, Table 4.

We note that the energy of the virtual d_{σ} -type orbital 4a', **3b**, is lower, Table 5, for M(CO)₅PH₃ than the energies for M(CO)₅-PMe₃ and M(CO)₅PPh₃. The lower energy is in part responsible for the smaller energy gap between 1a',1a'' and 4a' which leads to a larger coordination shift. The low energy of 4a', **3b**, in M(CO)₅PH₃ reflects the fact that PH₃ is a poor σ -donor with a σ_{PR_3} orbital of low energy, Table 3. The low energy of σ_{PH_3} will lead to a weak interaction with d_{σ} of M(CO)₅, Figure 2, and a modest destabilization of 4a', **3b**, which is an out-of-

TABLE 5: Energy Gaps ΔE between 1a" and 4a' in M(CO)₅PR₃

system	energy (eV) π_{PR_3} -type 1a''	energy (eV) d _o -type 4a'	$\Delta E ({ m eV})$
Cr(CO) ₅ PH ₃	-10.690	-0.553	10.137
Cr(CO) ₅ P(CH ₃) ₃	-9.000	1.409	10.409
Cr(CO) ₅ PPh ₃	-8.903	3.045	11.948
Cr(CO) ₅ PF ₃	-14.766	2.163	12.603
Cr(CO) ₅ PCl ₃	-12.329	-1.192	12.137
Mo(CO) ₅ PH ₃	-10.696	-0.281	10.415
Mo(CO) ₅ P(CH ₃) ₃	-9.067	2.107	11.174
Mo(CO) ₅ PPh ₃	-8.814	3.257	12.071
Mo(CO) ₅ PF ₃	-14.903	-1.045	13.858
Mo(CO) ₅ PCl ₃	-12.108	-0.768	11.340

TABLE 6: Population in the π^* -Type Orbitals for M(CO)₅PR₃ Complexes

system	total population in the two $\pi^*_{\mathrm{PR}_3}$ orbitals
Cr(CO) ₅ PH ₃	0.126
$Cr(CO)_5P(CH_3)_3$	0.120
Cr(CO) ₅ PPh ₃	0.082
$Cr(CO)_5PF_3$	0.326
Cr(CO) ₅ PCl ₃	0.374
Mo(CO) ₅ PH ₃	0.168
Mo(CO) ₅ P(CH ₃) ₃	0.030
Mo(CO) ₅ PPh ₃	0.064
Mo(CO) ₅ PF ₃	0.260
Mo(CO) ₅ PCl ₃	0.310

phase combination between σ_{PH_3} and d_{σ} . Our analysis would indicate that the observed ³¹P coordination shift components $\Delta \delta_{ss}$ (s = x or y) for M(CO)₅PR₃ and related alkyl or phenyl phosphine complexes can be taken as a measure for the degree of donation from σ_{PR_3} to d_{σ} with the poorest donors affording the largest values for $\Delta \delta_{ss}$ (s = x or y).

There is a clear reduction in the ³¹P coordination shift for a given PR₃ ligand as we move from chromium to molybdenum, Table 4. The d_{σ} orbital of the 4d element forms stronger overlaps⁴⁹ with σ_{PR_3} leading to the higher energy of 4a', Table 5, and the smaller coordination shift components $\Delta \delta_{ss}$ (s = x, y), Table 4.

The third coordination shift component $\Delta \delta_{zz}$ is very small, Table 4, for M(CO)₅PH₃, M(CO)₅PMe₃, and M(CO)₅PPh₃, will not be discussed any further here. We note further that the interaction between d_{π} of M(CO)₅ and $\pi^*_{PR_3}$ of the PR₃ ligand, Figure 2, is relatively weak for PH₃, P(CH₃)₃, and PPh₃ due to the high energy of $\pi^*_{PR_3}$, Table 3. There is as a consequence very little back-donation from d_{π} to $\pi^*_{PR_3}$, as illustrated in Table 6.

7. ³¹P Coordination Shifts in $M(CO)_5PF_3$ and $M(CO)_5PCl_3$

The coordination shifts for $M(CO)_5PF_3$ and $M(CO)_5PCl_3$ are a bit more complex as already noted by Kaupp.^{6f} However, we shall demonstrate that they can be interpreted as well in relatively simple terms.

The PF₃ and PCl₃ ligands have low-lying $\pi^*_{PX_3}$ orbitals, Table 3, that can interact with d_{π} leading to a back-donation of charge from d_{π} to $\pi^*_{PX_3}$ that is much larger than in the case of the PH₃, PMe₃, and PPh₃ ligands, Table 6. A result of this interaction is a destabilization of $\pi^*_{PX_3}$ as the major component in the 3a",5a' orbitals, Figure 2, both of which are out-of-phase combinations between d_{π} and $\pi^*_{PX_3}$. The back-donation will reduce the σ_{PX_3} to $\pi^*_{PX_3}$ paramagnetic couplings, **1c**, in the *x* and *y* directions and the π_{XP_3} to $\pi^*_{PX_3}$ paramagnetic coupling in the *z*-direction for the complexed PX₃ ligand compared to free PX₃ since the $\pi^*_{PX_3}$ energy effectively has been raised in

the complex as a result of the back-donation, Figure 2. The result is negative contributions to $\Delta \delta_{ss}$ (s = x, y) and $\Delta \delta_{zz}$. The negative contributions to $\Delta \delta_{ss}$ (s = x, y) and $\Delta \delta_{zz}$ are further compounded by stabilizations of σ_{PX_3} (2a') and π_{PX_3} (1a', 1a'') in coordinated PX₃, Figure 2, which add to the energy gap between the occupied and virtual orbitals.

It follows from Table 4 that the total coordination shift component $\Delta \delta_{77}$ is negative and we attribute this to the above mentioned reduction of the π_{PX_3} to $\pi^*_{PX_3}$ paramagnetic coupling in the $M(CO)_5PF_3$, $M(CO)_5PCl_3$ complexes. We note in this regard that the better π -acceptor PCl₃, Table 6, has the more negative $\Delta \delta_{zz}$ component, Table 4. Our analysis would suggest that $\Delta \delta_{zz}$ in experimental studies could be used as an indicator for the degree of back-donation. The total $\Delta \delta_{ss}$ (s = x, y) components in Table 4 are positive as the paramagnetic coupling, **3c**, between the occupied π_{PR_3} -type orbitals 1a',1a'', **3a**, and the virtual d_{σ} -type orbital 4a', **3b**, add a positive contribution to $\Delta \delta_{ss}$ (s = x, y) as in the case of the PH₃, PMe₃, and PPh₃ ligands. However, it is diminished by the negative contribution from the reduction in the coupling between σ_{PX_3} and $\pi^*_{PX_3}$ for complexed PR₃. Especially PCl₃ with the strongest back-donation, Table 6, is seen to have the smallest $\Delta \delta_{ss}$ (*s* = *x*, *y*) component of all the ligands, Table 4.

The finding here that PCl₃ is a better π -acceptor than either of the other ligands considered, including PF₃, is in agreement with conclusions drawn from IR spectroscopy,^{50a} metal phosphorus NMR coupling constants,^{50b} as well as M–P bond distances. There has been some discussion¹⁵ in the literature about whether the observed ³¹P coordination shift also support this notion. However, our analysis shows that the negative coordination shift for PCl₃ in fact is a consequence of the π -acceptor ability of this ligand.

It is well established⁵¹ that the π -acceptor ability for CX (X = O, S, Se, and Te) increases from oxygen to tellurium. This can be explained by observing that similar overlaps between orbitals on carbon and X will decrease from X = O to X = Te. The decrease in overlap will in turn make π^*_{CX} less anti-bonding and more stable for the higher homologous. Similar arguments holds for P–X overlaps and the energy of $\pi^*_{PX_3}$ (X = F and Cl), Table 3. In fact, the π -acceptor ability should increase from X = F to X = I as $\pi^*_{PX_3}$ becomes increasingly stable. It is interesting to note that the coordination chemical shift in accordance with the arguments given above becomes increasingly negative¹ from X = F to X = I. Unfortunately, we are at the moment not able to calculate the chemical shift s of PX₃ for X = Br and I since a proper relativistic treatment including spin–orbit is required.

8. ⁹⁵Mo NMR

The calculated and experimental 95 Mo chemical shift for Mo(CO)₅PPh₃, Mo(CO)₅PF₃ and Mo(CO)₅PCl₃ are presented in Table 7. Our calculations clearly reproduce the observed trend in the chemical shift as Mo(CO)₅PPh₃ < Mo(CO)₅PF₃ \ll Mo(CO)₅PCl₃.

The trend in the ⁹⁵Mo chemical shift is determined by the paramagnetic shielding component σ^{p} with the largest contribution $\sigma^{occ-vir}$ originating from the coupling between the d_{π} HOMO and the d_{σ} LUMO, Figure 2. Both σ^{p} and $\sigma^{occ-vir}$, as well as the energies of d_{π} and d_{σ} , are given in Table 8.

 $Mo(CO)_5PPh_3$ has the largest energy gap, 6.226 eV, and the smallest, in absolute terms, paramagnetic shielding, -2606.8 ppm. On the other hand, $Mo(CO)_5PCl_3$ presents the smallest energy gap 5.820 eV and the largest paramagnetic shielding, -3041.2 ppm, Table 8. We do not feel that the ⁹⁵Mo chemical

 TABLE 7. Calculated and Experimental 95Mo Chemical

 Shift Tensor Components (ppm) and Isotropic Chemical

 Shift for Several Phosphine-Substituted Metal Carbonyls

system	δ_{xx}	δ_{yy}	δ_{zz}	δ^{d}	$\delta^{ m p}$	chemical shift δ (exptl) ^a
Mo(CO) ₅ PPh ₃ ^b	-1668.6	-1662.1	-1837.3	4.4	-1727.1	-1722.7 $(-1743.0)^{c}$
$Mo(CO)_5PF_3^d$	-1760.2	-1745.4	-1753.1	6.1	-1759.0	-1752.9^{e} $(-1860.0)^{c}$
Mo(CO) ₅ PCl ₃ ^f	-1196.8	-1179.6	-1555.6	-2.6	-1308.0	-1310.6 $(-1523.0)^{c}$

^{*a*} Experimental data reported with respect to $[MoO_4]^{2-}$. ^{*b*} Reference 43. ^{*c*} Reference 15. ^{*d*} Reference 47. ^{*e*} Calculated absolute chemical shielding $\sigma_{[MoO_4]^{2-}} = -374.0$ ppm, $\sigma^d_{[MoO_4]^{2-}} = 3992$ ppm, and $\sigma^p_{[MoO_4]^{2-}} = -4366$ ppm. $\delta = \sigma_{[MoO_4]^{2-}} - \sigma_{substance}, \ \delta^d = \sigma^d_{[MoO_4]^{2-}} - \sigma^d_{substance}, \ and \ \delta^p = \sigma^p_{[MoO_4]^{2-}} - \sigma^p_{substance}$. ^{*f*} Optimized structure.

 TABLE 8. Paramagnetic Shielding in ⁹⁵Mo NMR for

 Several Phosphine-Substituted Metal Carbonyls

	total para-				
	magnetic		energy of	energy of	energy
	shielding	$\sigma^{ m occ-vir}$	d_{π} orbital	d_σ orbital	gap
system	$\sigma^{\rm p}$ (ppm)	(ppm)	(eV)	(eV)	(eV)
Mo(CO) ₅ PPh ₃	-2638.9	-2606.8	-5.961	0.265	6.226
Mo(CO) ₅ PF ₃	-2607.0	-2612.4	-7.011	-1.045	5.966
Mo(CO) ₅ PCl ₃	-3057.9	-3041.4	-6.585	-0.768	5.820

shift can be used as an indication of σ -donation of π -backdonation as either type of bonding could increase the energy gap between d_{π} and d_{σ} .

9. Conclusions

We have studied the ³¹P coordination shift $\Delta\delta$ for the phosphine-substituted metal carbonyls M(CO)₅PR₃ (M = Cr and Mo; PR₃ = PH₃, PMe₃, and PPh₃), Cr(CO)₄CSPh₃, and M(CO)₅-PX₃ (X = F and Cl) as well as the ⁹⁵Mo NMR chemical shift in Mo(CO)₅PPh₃ and Mo(CO)₅PX₃ (X = F and Cl). This is the first theoretical NMR study on phosphine complexes that includes PPh₃ as a ligand and compares calculated and experimental shift components $\Delta\delta_{ss}$ (s = x, y, or z). Calculations on ⁹⁵Mo NMR for phosphine complexes have not previously been reported.

For M(CO)₅PR₃ (M = Cr and Mo; PR₃ = PH₃, PMe₃, and PPh₃) the dominating contribution, $\Delta \delta_{xx}^{p} + \Delta \delta_{yy}^{p}$, to the coordination shift comes from the paramagnetic coupling between the occupied π_{PR_3} -type orbitals and the virtual d_{σ} orbitals, **3c**. It is suggested that the *xx*, *yy* components of the coordination shift can be used as an indicator for the donor ability of alkyl and phenyl phosphines, with a large component corresponding to a relatively weak donor.

Our calculations indicate that PF₃ and (especially) PCl₃ are much better π -acceptors than PH₃, PMe₃, and PPh₃, in agreement with the findings from numerous previous investigations. We have shown that back-donation will reduce the σ_{PX_3} to $\pi^*_{PX_3}$ paramagnetic couplings, **1c**, in the *x*, *y* directions and the π_{PX_3} to $\pi^*_{PX_3}$ paramagnetic coupling in the *z*-direction, **2c**, for the complexed PX₃ ligand compared to free PX₃ since the $\pi^*_{PX_3}$ energy effectively has been raised in the complex as a result of the back-donation. The result is negative contributions to $\Delta \delta_{ss}$ (s = x or y) and $\Delta \delta_{zz}$ in addition to the positive contribution from **3c** to $\Delta \delta^p_{xx} + \Delta \delta^p_{yy}$. The back-donation renders the $\Delta \delta_{zz}$ component of PX₃ complexes negative and the total coordination shift for the better π -acceptor PCl₃ negative. This is the first interpretation of the complex patterns in the coordination shift of PX₃ ligands, based on quantitative calculations.

Acknowledgment. This work has been supported by the National Sciences and Engineering Research Council of Canada (NSERC). Y.R.-M. acknowledges a scholarship from DGAPA-UNAM (Mexico), and T. Z. acknowledges a Canada Council Killam Research Fellowship. We thank the Petroleum Research Fund administered by the American Chemical Society (ACS-PRF Grant 31205-AC3) for further support of this research.

References and Notes

(1) (a) Mason, J., Ed. Multinuclear NMR; Plenum Press: New York, 1987. (b) Fukui, H. Magn. Reson. Rev. 1987, 11, 205. (c) Chesnut, D. B. In Annual Reports on NMR Spectroscopy; Webb, G. A., Ed.; Academic Press: New York, 1989; Vol. 2. (d) Jameson, C. J. In Specialist Periodic Reports on NMR; Webb, G. A., Ed.; Royal Society of Chemistry: London, 1980-1997; Vol. 8-26. (e) Pyykkö, P. Chem. Rev. 1988, 88, 563.

(2) (a) Tossell, J. A., Ed. Nuclear Magnetic Shiedings and Molecular Structure; NATO ASI Series C386; Kluwer Academic Publishers: Dordrecht, The Netherlands. 1993. (b) Chusnut, D. B. In Annual Reports on NMR Spectroscopy; Webb, G. A., Ed. Academic Press: New York, 1994; Vol. 29.

(3) (a) Kutzelnigg, W.; Fleischer, U.; Schindler, M. In NMR-Basic Principles and Progress; Springer-Verlag: Berlin, 1990; Vol. 23, p 165. (b) Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251. (c) Ballard, C. C.; Hada, M.; Nakatsuji, H. Chem. Phys. Lett. 1995, 254, 170.

(4) Gauss, J.; Stanton, J. F. J. Chem. Phys. 1995, 102. 251.

(5) (a) Malkin, V. G.; Malkina, O. L.; Erikson, L. A.; Salahub, D. R. In Modern Density Function Theory: A Tool for Chemistry; Politzer, P.; Seminario, J. M., Eds.; Elsevier: Amsterdam, the Netherlands, 1995; Vol. 2. (b) Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1995, 239, 186. (c) Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1996, 261, 335.

(6) (a) Kaupp, M.; Malkin, V. G.; Malkina, O. L.; Salahub, D. R. J. Am. Chem. Soc. 1995, 117, 1851. (b) Kaupp, M.; Malkin, V. G.; Malkina, O. L. Salahub, D. R. Chem. Phys. Lett. 1995, 235, 382. (c) Kaupp, M.; Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Eur. J. 1996, 2, 24. (d) Kaupp, M. Chem. Eur. J. 1996, 2, 348. (e) Kaupp, M. Chem. Ber. 1996, 129, 527. (f) Kaupp, M. Chem. Ber. 1996, 129, 535. (g) Kaupp, M. J. Am. Chem. Soc. 1996, 118, 3018. (h) Kaupp, M.; Malkina, O. L.; Malkin, V. G. J. Chem. Phys. 1997, 106, 9201. (i) Kaupp, M.; Malkina, O. L.; Malkin, V. G. Chem. Phys. Lett. 1997, 265, 55. (j) Kaupp, M.; Malkina, O. L.; Malkin, V. G.; Pyykkö, P. Submitted for publication.
(7) (a) Bühl, M. Organometallics, 1997, 16, 261. (b) Bühl, M. Chem.

Phys. Lett. 1997, 267, 251. (c) Bühl, M. J. Phys. Chem. A 1997, 101, 2514. (d) Bühl, M.; Brintzinger H.-H.; Hopp, G. Organometallics **1996**, *15*, 778. (e) Bühl, M.; Malkin, V. G.; Malkina, O. L. Helv. Chim. Acta **1996**, *79*, 742. (f) Bühl, M. J. Phys. Chem. A 1997, 101, 2514.

(8) (a) Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1995, 99, 606. (b) Schreckenbach, G.; Dickson, R. M.; Ruiz-Morales, Y.; Ziegler, T. In Density Functional Theory in Chemistry; Laird, B., Ross, R., Ziegler, T., Eds.; American Chemical Society: Washington, DC, 1996; p 328. (c) Rauhut, G.; Puyear, S.; Wolinski, K.; Pulay, P. J. Phys. Chem. **1996**, 100, 6103. (d) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 104, 5497. (e) Lee, A. M. Handy, N. C.; Colwell, S. M. J. Chem. Phys. 1995, 103, 10095.

 (9) (a) London, F. J. Phys. Radium 1937, 8, 397. (b) Ditchfield, R.
 Mol. Phys. 1974, 27, 789. (c) Bieger, W.; Seifert, G.; Eschrig, H.; Grossmann, G. Chem. Phys. Lett. 1985, 115, 275. (d) Friedrich, K.; Seifert, G.; Grossmann, G. Z. Phys. 1990, D17, 45.

(10) (a) Ruiz-Morales, Y.; Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1996, 100, 3359. (b) Ruiz-Morales, Y.; Schreckenbach, G.; Ziegler, T. Organometallics 1996, 15, 3920. (c) Ruiz-Morales, Y.; Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1997, 101. 4121. (d) Schreckenbach, G.; Ruiz-Morales, Y.; Ziegler, T. J. Chem. Phys. 1996, 104, 8605. (e) Ehlers, A. W.; Ruiz-Morales, Y.; Baerends, E. J.; Ziegler, T. Inorg. Chem. 1997, 36, 5031-5036.

(11) (a) Schreckenbach, G.; Ziegler, T. Int. J. Quantum Chem. 1996, 60, 753. (b) Schreckenbach, G.; Ziegler, T. Int. J. Quantum Chem. 1997, 61, 899.

(12) (a) Godbout, N.; Oldfield, E. J. Am. Chem. Soc. 1997, 119, 8065. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(13) (a) Nakatsuji, H.; Takashima, H.; Hada, M. Chem. Phys. Lett. 1995, 233, 95. (b) Nakatsuji, H.; Nakajima, T.; Hada, M.; Takashima, H.; Tanaka, S. Chem. Phys. Lett. 1995, 247, 418. (c) Nakatsuji, H.; Hada, M.; Tejima, T.; Nakajima, T.; Sugimoto, M. Chem. Phys. Lett. 1995, 249, 284.

(14) (a) Wasylishen, R. E.; Eichele, K.; Nelson, J. H. Inorg. Chem. 1996, 35, 3905. (b) Power, P. W.; Wasylishen, R. E.; Curtis, R. Can. J. Chem. 1989, 67, 454. (c) Eichele, K.; Wasylishen, R. E.; Britten, J. F. Inorg. Chem. 1997, 36, 3539. (d) Eichele, K.; Wasylishen, R. E.; Nelson, J. H. J. Phys. Chem. 1997, 101, 5463. (e) Malito, J. Annu. Rep. NMR Spectrosc. 1997, 33, 151.

(15) (a) Song, S.; Alyea, E. C. Can. J. Chem. 1996, 74, 2304. (b) Alyea, E. C.; Song, S. Inorg. Chem. 1995, 34, 3864.

(16) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.

(17) Baerends, E. J.; Ros, P. Chem. Phys. 1973, 2, 52.

(18) Baerends, E. J. PhD Thesis, Free University, Amsterdam, The Netherlands, 1973.

(19) Baerends, E. J.; Ross, P. Int. J. Quantum Chem. Symp. 1978, 12, 169.

(20) te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988, 33, 87. (21) te Velde, G. Amsterdam Density Functional (ADF), User Guide,

Release 1.1.3; Department of Theoretical Chemistry, Free University: Amsterdam, The Netherlands, 1994.

(22) Becke, A. Phys. Rev. 1988, A38, 3098.

(23) Perdew, J. Phys. Rev. 1986, B33, 8822.

(24) Vernoijs, P.; Snijders, J. G.; Baerends, E. J. Slater Type Basis Functions for the Whole Periodic System; Internal report (in Dutch); Department of Theoretical Chemistry, Free University: Amsterdam, The Netherlands, 1981.

(25) Snijders, J. G.; Baerends, E. J.; Vernoijs, P. At. Nucl. Data Tables 1982. 26, 483.

(26) Krijn, J.; Baerends, E. J. Fit Functions in the HFS Method; Internal Report (in Dutch); Department of Theoretical Chemistry, Free University: Amsterdam, The Netherlands, 1984.

(27) Ballhausen, C. J. In Introduction to Ligand Field Theory; McGraw-Hill: New York, 1962; pp 149.

(28) McGlynn, S. P.; Vanquickenborn, L. G.; Kinoshita, M.; Carroll, D. G. In Introduction to Applied Quantum Chemistry; Holt, Rinehart and Winston: New York, 1972.

(29) (a) Pople, J. A.; Schneider, W. G.; Bernstein, H. J. High-Resolution Nuclear Magnetic Resonance; McGraw-Hill: New York, 1959. (b) Elschenbroich, C.; Salzer, A. Organometallics. A Concise Introduction; Verlag Chemie: Weinheim, Germany, 1992.

(30) Bouman, T. D.; Hansen, A. E. Chem. Phys. Lett. 1990, 175, 292.

(31) The bracket notation $\langle \Psi_1 | \hat{M}_s | \Psi_2 \rangle$ denotes certain matrix elements (integrals) between the two orbitals Ψ_1 and Ψ_2 that contribute to the paramagnetic shielding $\sigma^{\rm p}$

(32) The expression $|\hat{M}_x|\pi_{\text{PR}_2}^*\rangle$ denotes an orbital resulting from the action of the operator \hat{M}_x on the $\pi_{R_x}^*$ orbital. (33) Pregosin, P. S.; Kunz, R. W. *NMR Basic Principles and Progress*;

Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: New York, 1979.

(34) Masse, R.; Tordjman, I. Acta Crystallogr. C: Cryst. Struct. Commun. 1990, 46, 606.

(35) Moser, E.; Fischer, E. O.; Bathelt, W.; Gretner, W.; Knauss, L.; Louis, E. J. Organomet. Chem. 1969, 19, 337.

(36) Bruckmann, J.; Kruger, C. Acta Crystallogr. C: Cryst. Struct. Commun. 1995, 51, 1155.

(37) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press; NY, 1994; pp 564, 568. (38) Lee, K. J.; Brown, T. L. *Inorg. Chem.* **1992**, *31*, 289.

(39) Mathieu, R.; Lenzi, M.; Poilblanc, R. Inorg. Chem. 1970, 9, 2030. (40) Huang, Y.; Uhm, H. L.; Gilson, D. F. R.; Butler, I. S. Inorg. Chem.

1997, 36, 435.

(41) Chekhlov, A. N. Kristallografiya 1993, 18, 79.

(42) Plastas, H. J.; Stewart, J. M.; Grim, S. O. Inorg. Chem. 1973, 12, 265

(43) Davies, M. S.; Aroney, M. J.; Buys, I. E.; Hambley, T. W.; Calvert, J. L. Inorg. Chem. 1995, 34, 330.

(44) Cotton, F. A.; Darensbourg, D. J.; Ilsley, W. H. Inorg. Chem. 1981, 20, 578.

(45) Jameson, C. J.; De Dios, A.; Jameson, A. K. Chem. Phys. Lett. 1990, 167, 575.

(46) Macintyre, J. E., Ed. Dictionary on Inorganic Compounds; Chapman and Hall: Cambridge, Great Britain, 1992; p 2932.

(47) Bridges, D. M.; Holywell, G. C.; Rankin, D. W. J. Organomet. Chem. 1971, 32, 87.

(48) Dove, M. F. A.; Jones, E. M. L.; Clark, R. J. Magn. Reson. Chem. 1989, 27, 973.

(49) Ziegler, T.; Tschinke, V.; Ursenbach, C. J. Am. Chem. Soc. 1987, 109, 4827. (b) Li, J.; Schreckenbach, G.; Ziegler, T. J. Am. Chem. Soc. 1995, 117, 486.

(50) (a) Graham, W. A. G. Inorg. Chem. 1968, 7, 315. (b) Masters, A. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G. J. Organomet. Chem. 1985, 290, 365

(51) Ziegler, T. Inorg. Chem. 1985, 25, 2721.